
CSE 333
Section 1
C, Pointers, and Gitlab

1

Logistics

2

● Exercise 1:
○ Due Monday @ 10 PM (10/2)

● Homework 0:
○ Due Tuesday @ 10 PM (10/3)
○ Meant to acquaint you to your repo and project logistics
○ Must be done individually (some future HWs allow partners)

3

TA Intro: Leanna Nguyen (Mi)
● Junior in CS, minoring in Vietnamese Language &

Culture!
● 3rd time TA, 2nd time for 333
● Interests: cybersecurity, education
● Hobbies: running, listening to music (spotify ftw),

crocheting

4

TA Intro: Humza Lala

● Senior in CS

● 4th-time TA, 3rd-time 333 TA

● Hobbies: Hiking, kayaking, languages,

photography, and genealogy

Icebreaker!

In groups of ~3, please share:

● Name and Year

● Favorite hobby, sport, and class taken so far.

● Find one thing in common

● Choose 1 person to share out your names and your group’s common ~thing~
with the section

5

Pointer Review

6

Pointers

● Data type that stores the address of (the lowest byte of) a datum
○ Tip! Can draw an arrow in memory diagrams from pointer to pointed to

data, particularly if actual value (stored address) is unknown

7

● Common uses:
○ Reference to data allocated elsewhere (e.g., malloc, literals, files)
○ Iterators (e.g., data structure traversal)
○ Data abstraction (e.g., head of linked list, function pointers)

Pointers: Syntax and Semantics

● Declared as type* name; or type *name;
○ Doesn’t matter, just be consistent

● “Address-of” operator & gets a variable’s address
● “Dereference” operator * refers to the pointed-to datum

● Example code:

● Example diagram:

8

int* ar = (int*) malloc(3*sizeof(int)); // reference
int* p = &ar[1]; // iterator
*p = 3;

0x1b126b0

0x1b126b4

? 3 ?
ar

p

Stack Heap

Output Parameters

9

Output Parameters

● Recall: the return statement in a function passes a single value
back through the %rax register

10

● An output parameter is a C idiom that emulates “returning
values” through parameters:
○ An output parameter is a pointer (i.e., the address of a location in

memory)
○ The function with this parameter must dereference it to change the

value stored at that location
○ The new value is “returned” by persisting after the function returns

● Output parameters are the only way in C to achieve returning
multiple values

Exercise 1

11

Exercise 1

● Which parameters are output
parameters?

● What should go in the division
blanks?

● What should go in the printf
blanks?

12

void division(int numerator,
 int denominator,
 int* quotient,
 int* remainder) {
 *quotient = numerator / denominator;
 *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
 int quot, rem;
 division(22, 5, _____, _____);
 printf("%d rem %d\n", _____, _____);
 return EXIT_SUCCESS;
}

quotient and remainder

" and &rem

quot and rem

Exercise 1

● Which parameters are output
parameters?

● What should go in the division
blanks?

● What should go in the printf
blanks?

13

void division(int numerator,
 int denominator,
 int* quotient,
 int* remainder) {
 *quotient = numerator / denominator;
 *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
 int quot, rem;
 division(22, 5, _____, _____);
 printf("%d rem %d\n", _____, _____);
 return EXIT_SUCCESS;
}

Exercise 1

● Draw out a memory diagram of the
beginning of this call to division.

14

void division(int numerator,
 int denominator,
 int* quotient,
 int* remainder) {
 *quotient = numerator / denominator;
 *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
 int quot, rem;
 division(22, 5, _____, _____);
 printf("%d rem %d\n", _____, _____);
 return EXIT_SUCCESS;
}

?quot ?rem

quotient remainder

numerator 22 denominator 5

Stack

Exercise 1

● Draw out a memory diagram of the
beginning of this call to division.

15

void division(int numerator,
 int denominator,
 int* quotient,
 int* remainder) {
 *quotient = numerator / denominator;
 *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
 int quot, rem;
 division(22, 5, _____, _____);
 printf("%d rem %d\n", _____, _____);
 return EXIT_SUCCESS;
}

C-Strings

16

C-Strings

● A string in C is declared as an array of characters that is terminated by a null
character '\0'

● When allocating space for a string, remember to add an extra element for the
null character

17

char str_name[size];

Initialization Examples

● Code:

● Memory:

● Notes:
○ Both initialize the array in the declaration scope (e.g., on the stack if a local var),

though the latter can be thought of copying the contents from the string literal into
the array

○ The size 6 is optional, as it can be inferred from the initialization
18

// list initialization
char str1[6] = {'H','e','l','l','o','\0'};
// string literal initialization
char str2[6] = "Hello";

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

Common String Literal Error

● Code:

● Memory:

● Notes:
○ By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)

19

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

// pointer instead of an array
char* str3 = "Hello";

0x402037str3

Common String Literal Error

● Code:

● Memory:

● Notes:
○ By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)
○ What would happen if we executed str3[0] = 'J';?

20

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

// pointer instead of an array
char* str3 = "Hello";

0x402037str3

Segfault!

Exercise 2

21

void bar(char ch) {
 ch = '3';
}

int main(int argc, char* argv[]) {
 char fav_class[] = "CSE331";
 bar(fav_class[5]);
 printf("%s\n", fav_class); // should print "CSE333"
 return EXIT_SUCCESS;
}

22

The following code has a bug. What’s the problem, and how would you fix it?

void bar(char ch) {
 ch = '3';
}

int main(int argc, char* argv[]) {
 char fav_class[] = "CSE331";
 bar(fav_class[5]);
 printf("%s\n", fav_class); // should print "CSE333"
 return EXIT_SUCCESS;
}

char ch
bar stack frame

23

Modifying the argument ch in bar will not affect fav_class in
main() because arguments in C are always passed by value.

In order to modify fav_class in main(), we need to pass a
pointer to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
 *ch = '3';
}

The following code has a bug. What’s the problem, and how would you fix it?

char[] fav_class
main stack frame 'C' '\0''S' 'E' '3' '3' '1'

'1''3'

void bar_fixed(char* ch) {
 *ch = '3';
}

int main(int argc, char* argv[]) {
 char fav_class[] = "CSE331";
 bar(&fav_class[5]);
 printf("%s\n", fav_class); // should print "CSE333"
 return EXIT_SUCCESS;
}

24

Modifying the argument ch in bar will not affect fav_class in
main() because arguments in C are always passed by value.

In order to modify fav_class in main(), we need to pass a
pointer to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
 *ch = '3';
}

The following code has a bug. What’s the problem, and how would you fix it?

char[] fav_class
main stack frame 'C' '\0''S' 'E' '3' '3' '1''3'

char* ch
bar_fixed stack
frame

Setting Up git

25

gcc 11

● CSE Lab machines and the attu cluster have been updated to use
gcc 11.

● As such we’ll be using gcc 11 this quarter

● To verify that you’re using gcc 11 run:
○ gcc -v or
○ gcc --version

● If you use the CSE Linux home VM, you need to use the newer version
even if you have an older one installed (i.e., use 22au or later).

26

Git Repo Usage

27

● Try to use the command line interface (not Gitlab’s web interface)

● Only push files used to build your code to the repo
○ No executables, object files, etc.
○ Don’t always use git add . to add all your local files

● Commit and push when an individual chunk of work is tested and
done
○ Don’t push after every edit
○ Don’t only push once when everything is done

git/Gitlab Reference

We have a page that details how to (1) set up Gitlab and (2) use git to
manage your repo (solo or with a partner):
● https://courses.cs.washington.edu/courses/cse333/23au/gitlab/

We asked you to attempt your Gitlab setup ahead of time:
● If you didn’t, please do so now on your CSE Linux environment setup
● If you did and ran into issues, we’ll walk around to help you now

28

https://courses.cs.washington.edu/courses/cse333/23au/gitlab/

Accessing Gitlab

● Sign-in using your CSE NetID @
https://gitlab.cs.washington.edu/

● There should be a repo created for
you titled:
cse333-23au-<netid>

● Please let us know if you don’t
have one!

29

https://gitlab.cs.washington.edu/

SSH Key Generation

Step 1a) See if you have an existing SSH key
● Run cat ~/.ssh/id_rsa.pub
● If you see a long string starting with ssh-rsa or ssh-dsa go to Step 2

Step 1b) Generate a new SSH key
● If you don’t have an existing SSH key, you’ll need to create one
● Run ssh-keygen -t rsa -C "<netid>@cs.washington.edu" to generate

a new key
● Hit enter to skip creating a password

○ git docs suggest creating a password, but it’s overkill for CSE333

30

Adding your SSH key to Gitlab

Step 2) Copy your SSH key
● Run cat ~/.ssh/id_rsa.pub
● Copy the complete key starting with ssh- and ending with your username and

host
(i.e. <netid>@cs.washington.edu)

Step 3) Add your SSH key to Gitlab

31

Adding your SSH key to Gitlab

Step 3) Add your SSH key to Gitlab
● Navigate to your ssh-keys page

(click on your avatar in the
upper-right, then “Preferences,”
then “SSH Keys” in the left-side
menu)

● Paste into the “Key” text box
and give a “Title” to identify
what machine the key is for

● Click the green “Add key” button
below “Title”

32

Setting up git

● The git command looks for a file named .gitconfig in your home
directory. Some commands like commit and push expect certain options to
be set and will produce verbose messages if not.

● If you have not already configured git, enter the following commands (once)
in a terminal window to set these values:

git config --global user.name “<your name>”

git config --global user.email <your netid>@cs.washington.edu

git config --global push.default simple

33

First Commit
1. git clone <repo url from project page>

a. Clones your repo
2. touch README.md

a. Creates an empty file called README.md
3. git status

a. Prints out the status of the repo: you should see 1 new file README.md
4. git add README.md (or: git stage README.md)

a. Stages a new file/updated file for commit.
 git status: README.md staged for commit

5. git commit -m "First Commit"
a. Commits all staged files with the provided comment/message.

 git status: Your branch is ahead by 1 commit.
6. git push

a. Publishes the changes to the central repo.
 You should now see these changes in the web interface (may need to refresh).

7. Might need git push -u origin master on first commit (only), but would be unusual for this to happen
34

Function Pointers

35

Function Pointers

● Pointers can store addresses of
functions
○ Functions are just instructions

in read-only memory, their
names are pointers to this
memory.

● Used when performing
operations for a function to use
○ Like a comparator for a sorter

to use in Java
○ Reduces redundancy

36

int one() { return 1; }
int two() { return 2; }
int three() { return 3; }

int get(int (*func_name)()) {
 return func_name();
}

int main(int argc, char* argv[]) {
 int res1 = get(one);
 int res2 = get(two);
 int res3 = get(three);
 printf("%d, %d, %d\n", res1, res2, res3);
 return EXIT_SUCCESS;
}

