
CSE 333
Section 1
C, Pointers, and Gitlab

1



Logistics
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● Exercise 1:
○ Due Monday  @ 10 PM (10/2)

● Homework 0:
○ Due Tuesday  @ 10 PM (10/3)
○ Meant to acquaint you to your repo and project logistics
○ Must be done individually (some future HWs allow partners)
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TA Intro: Leanna Nguyen (Mi)  
● Junior in CS, minoring in Vietnamese Language & 

Culture!
● 3rd time TA, 2nd time for 333
● Interests: cybersecurity, education
● Hobbies: running, listening to music (spotify ftw), 

crocheting
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TA Intro: Humza Lala

● Senior in CS

● 4th-time TA, 3rd-time 333 TA

● Hobbies: Hiking, kayaking, languages, 

photography, and genealogy



Icebreaker!

In groups of ~3, please share:

● Name and Year

● Favorite hobby, sport, and class taken so far.

● Find one thing in common

● Choose 1 person to share out your names and your group’s common ~thing~ 
with the section
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Pointer Review
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Pointers

● Data type that stores the address of (the lowest byte of) a datum
○ Tip! Can draw an arrow in memory diagrams from pointer to pointed to 

data, particularly if actual value (stored address) is unknown
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● Common uses:
○ Reference to data allocated elsewhere (e.g., malloc, literals, files)
○ Iterators (e.g., data structure traversal)
○ Data abstraction (e.g., head of linked list, function pointers)



Pointers: Syntax and Semantics

● Declared as type* name; or type *name;
○ Doesn’t matter, just be consistent

● “Address-of” operator & gets a variable’s address
● “Dereference” operator * refers to the pointed-to datum

● Example code:

● Example diagram:
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int* ar = (int*) malloc(3*sizeof(int));  // reference
int* p = &ar[1];  // iterator
*p = 3;

0x1b126b0

0x1b126b4

? 3 ?
ar

p

Stack Heap



Output Parameters
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Output Parameters

● Recall:  the return statement in a function passes a single value 
back through the %rax register 
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● An output parameter is a C idiom that emulates “returning 
values” through parameters:
○ An output parameter is a pointer (i.e., the address of a location in 

memory)
○ The function with this parameter must dereference it to change the 

value stored at that location
○ The new value is “returned” by persisting after the function returns

● Output parameters are the only way in C to achieve returning 
multiple values



Exercise 1
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Exercise 1

● Which parameters are output 
parameters?

● What should go in the division 
blanks?

● What should go in the printf 
blanks?
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void division(int  numerator,
              int  denominator,
              int* quotient,
              int* remainder) {
  *quotient = numerator / denominator;
  *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
  int quot, rem;
  division(22, 5, _____, _____);
  printf("%d rem %d\n", _____, _____);
  return EXIT_SUCCESS;
}

quotient and remainder

&quot and &rem

quot and rem



Exercise 1

● Which parameters are output 
parameters?

● What should go in the division 
blanks?

● What should go in the printf 
blanks?
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void division(int  numerator,
              int  denominator,
              int* quotient,
              int* remainder) {
  *quotient = numerator / denominator;
  *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
  int quot, rem;
  division(22, 5, _____, _____);
  printf("%d rem %d\n", _____, _____);
  return EXIT_SUCCESS;
}



Exercise 1

● Draw out a memory diagram of the 
beginning of this call to division.
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void division(int  numerator,
              int  denominator,
              int* quotient,
              int* remainder) {
  *quotient = numerator / denominator;
  *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
  int quot, rem;
  division(22, 5, _____, _____);
  printf("%d rem %d\n", _____, _____);
  return EXIT_SUCCESS;
}

?quot ?rem

quotient remainder

numerator 22 denominator 5

Stack



Exercise 1

● Draw out a memory diagram of the 
beginning of this call to division.
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void division(int  numerator,
              int  denominator,
              int* quotient,
              int* remainder) {
  *quotient = numerator / denominator;
  *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
  int quot, rem;
  division(22, 5, _____, _____);
  printf("%d rem %d\n", _____, _____);
  return EXIT_SUCCESS;
}



C-Strings
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C-Strings

● A string in C is declared as an array of characters that is terminated by a null 
character '\0'

● When allocating space for a string, remember to add an extra element for the 
null character
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char str_name[size];



Initialization Examples

● Code:

● Memory:

● Notes:
○ Both initialize the array in the declaration scope (e.g., on the stack if a local var), 

though the latter can be thought of copying the contents from the string literal into 
the array

○ The size 6 is optional, as it can be inferred from the initialization
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// list initialization
char str1[6] = {'H','e','l','l','o','\0'};
// string literal initialization
char str2[6] = "Hello";

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'



Common String Literal Error

● Code:

● Memory:

● Notes:
○ By default, using a string literal will allocate and initialize the character array in 

read-only memory (Literals)
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index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

// pointer instead of an array
char* str3 = "Hello";

0x402037str3



Common String Literal Error

● Code:

● Memory:

● Notes:
○ By default, using a string literal will allocate and initialize the character array in 

read-only memory (Literals)
○ What would happen if we executed str3[0] = 'J';?
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index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

// pointer instead of an array
char* str3 = "Hello";

0x402037str3

Segfault!



Exercise 2
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void bar(char ch) {
  ch = '3';
}

int main(int argc, char* argv[]) {
  char fav_class[] = "CSE331";
  bar(fav_class[5]);
  printf("%s\n", fav_class);  // should print "CSE333"
  return EXIT_SUCCESS;
}
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The following code has a bug. What’s the problem, and how would you fix it?



void bar(char ch) {
  ch = '3';
}

int main(int argc, char* argv[]) {
  char fav_class[] = "CSE331";
  bar(fav_class[5]);
  printf("%s\n", fav_class);  // should print "CSE333"
  return EXIT_SUCCESS;
}

char ch
bar stack frame

23

Modifying the argument ch in bar will not affect fav_class in 
main() because arguments in C are always passed by value. 

In order to modify fav_class in main(), we need to pass a 
pointer to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
  *ch = '3';
}

The following code has a bug. What’s the problem, and how would you fix it?

char[] fav_class 
main stack frame 'C' '\0''S' 'E' '3' '3' '1'

'1''3'



void bar_fixed(char* ch) {
  *ch = '3';
}

int main(int argc, char* argv[]) {
  char fav_class[] = "CSE331";
  bar(&fav_class[5]);
  printf("%s\n", fav_class);  // should print "CSE333"
  return EXIT_SUCCESS;
}
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Modifying the argument ch in bar will not affect fav_class in 
main() because arguments in C are always passed by value. 

In order to modify fav_class in main(), we need to pass a 
pointer to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
  *ch = '3';
}

The following code has a bug. What’s the problem, and how would you fix it?

char[] fav_class 
main stack frame 'C' '\0''S' 'E' '3' '3' '1''3'

char* ch
bar_fixed stack 
frame



Setting Up git
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gcc 11

● CSE Lab machines and the attu cluster have been updated to use 
gcc 11.

● As such we’ll be using gcc 11 this quarter

● To verify that you’re using gcc 11 run:
○ gcc -v or
○ gcc --version

● If you use the CSE Linux home VM, you need to use the newer version 
even if you have an older one installed (i.e., use 22au or later).
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Git Repo Usage

27

● Try to use the command line interface (not Gitlab’s web interface)

● Only push files used to build your code to the repo
○ No executables, object files, etc.
○ Don’t always use git add . to add all your local files

● Commit and push when an individual chunk of work is tested and 
done
○ Don’t push after every edit
○ Don’t only push once when everything is done



git/Gitlab Reference

We have a page that details how to (1) set up Gitlab and (2) use git to 
manage your repo (solo or with a partner):
● https://courses.cs.washington.edu/courses/cse333/23au/gitlab/

We asked you to attempt your Gitlab setup ahead of time:
● If you didn’t, please do so now on your CSE Linux environment setup
● If you did and ran into issues, we’ll walk around to help you now
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https://courses.cs.washington.edu/courses/cse333/23au/gitlab/


Accessing Gitlab

● Sign-in using your CSE NetID @ 
https://gitlab.cs.washington.edu/

● There should be a repo created for 
you titled: 
cse333-23au-<netid>

● Please let us know if you don’t 
have one!
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https://gitlab.cs.washington.edu/


SSH Key Generation

Step 1a) See if you have an existing SSH key
● Run cat ~/.ssh/id_rsa.pub
● If you see a long string starting with ssh-rsa or ssh-dsa go to Step 2

Step 1b) Generate a new SSH key
● If you don’t have an existing SSH key, you’ll need to create one
● Run ssh-keygen -t rsa -C "<netid>@cs.washington.edu" to generate 

a new key
● Hit enter to skip creating a password

○ git docs suggest creating a password, but it’s overkill for CSE333
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Adding your SSH key to Gitlab

Step 2) Copy your SSH key
● Run cat ~/.ssh/id_rsa.pub
● Copy the complete key starting with ssh- and ending with your username and 

host
(i.e. <netid>@cs.washington.edu)

Step 3) Add your SSH key to Gitlab
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Adding your SSH key to Gitlab

Step 3) Add your SSH key to Gitlab
● Navigate to your ssh-keys page 

(click on your avatar in the 
upper-right, then “Preferences,” 
then “SSH Keys” in the left-side 
menu)

● Paste into the “Key” text box 
and give a “Title” to identify 
what machine the key is for

● Click the green “Add key” button 
below “Title”
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Setting up git

● The git command looks for a file named .gitconfig in your home 
directory.  Some commands like commit and push expect certain options to 
be set and will produce verbose messages if not.

● If you have not already configured git, enter the following commands (once) 
in a terminal window to set these values:

git config --global user.name “<your name>”

git config --global user.email <your netid>@cs.washington.edu

git config --global push.default simple
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First Commit
1.  git clone <repo url from project page>

a.  Clones your repo
2.  touch README.md

a.  Creates an empty file called README.md
3.  git status

a.  Prints out the status of the repo:  you should see 1 new file README.md
4.  git add README.md (or: git stage README.md)

a.  Stages a new file/updated file for commit.  
 git status: README.md staged for commit

5.  git commit -m "First Commit"
a.  Commits all staged files with the provided comment/message.  

 git status: Your branch is ahead by 1 commit.
6.  git push

a.  Publishes the changes to the central repo. 
 You should now see these changes in the web interface (may need to refresh).

7. Might need git push -u origin master on first commit (only), but would be unusual for this to happen
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Function Pointers
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Function Pointers

● Pointers can store addresses of 
functions
○ Functions are just instructions 

in read-only memory, their 
names are pointers to this 
memory.

● Used when performing 
operations for a function to use
○ Like a comparator for a sorter 

to use in Java
○ Reduces redundancy
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int one()   { return 1; }
int two()   { return 2; }
int three() { return 3; }

int get(int (*func_name)()) {
  return func_name();
}

int main(int argc, char* argv[]) {
  int res1 = get(one);
  int res2 = get(two);
  int res3 = get(three);
  printf("%d, %d, %d\n", res1, res2, res3);
  return EXIT_SUCCESS;
}


